38 research outputs found

    Singly labeled smart probes for real-time monitoring of the kinetics of dNTP misincorporation and single nucleotide extension in DNA intra-molecular polymerization

    No full text
    In this paper, a simple and rapid method was developed for real-time monitoring of the kinetics of dNTP misincorporation and single nucleotide extension in DNA intra-molecular polymerization by using singly labeled fluorophore-oligonucleotide smart probes. The probes are designed with a self-complementary T-end and a sequence of stacked cytosines at the 5'-end, to which a fluorescein (FAM) is attached. When the DNA polymerase is introduced, it will bind to the 3'-end of the probe and catalyze the extension reaction, resulting in the formation of stacked guanines, which will instantly quench the fluorescence of FAM through photoelectron transfer. The method can accurately quantify the activity of the Klenow fragment of Escherichia coli DNA polymerase I with the exonuclease activity inactivated (KF(-)) in 3 min with a detection limit down to 3.7 pM, which is much faster and more sensitive than the existing technology in monitoring the polymerization in bulk reaction. Moreover, the smart probes could be used to determine the kinetics of dNTP misincorporation and single nucleotide extension by proper design of the sequence. The method is universally adaptive to any fluorescence spectrometer and offers a very convenient and cost-effective way for characterization of the fine kinetic procedures in DNA polymerization. (C) 2009 Elsevier B.V. All rights reserved

    Band Subset Selection for Hyperspectral Image Classification

    No full text
    This paper develops a new approach to band subset selection (BSS) for hyperspectral image classification (HSIC) which selects multiple bands simultaneously as a band subset, referred to as simultaneous multiple band selection (SMMBS), rather than one band at a time sequentially, referred to as sequential multiple band selection (SQMBS), as most traditional band selection methods do. In doing so, a criterion is particularly developed for BSS that can be used for HSIC. It is a linearly constrained minimum variance (LCMV) derived from adaptive beamforming in array signal processing which can be used to model misclassification errors as the minimum variance. To avoid an exhaustive search for all possible band subsets, two numerical algorithms, referred to as sequential (SQ) and successive (SC) algorithms are also developed for LCMV-based SMMBS, called SQ LCMV-BSS and SC LCMV-BSS. Experimental results demonstrate that LCMV-based BSS has advantages over SQMBS

    Fault Diagnosis Method Based on AUPLMD and RTSMWPE for a Reciprocating Compressor Valve

    No full text
    In order to effectively extract the key feature information hidden in the original vibration signal, this paper proposes a fault feature extraction method combining adaptive uniform phase local mean decomposition (AUPLMD) and refined time-shift multiscale weighted permutation entropy (RTSMWPE). The proposed method focuses on two aspects: solving the serious modal aliasing problem of local mean decomposition (LMD) and the dependence of permutation entropy on the length of the original time series. First, by adding a sine wave with a uniform phase as a masking signal, adaptively selecting the amplitude of the added sine wave, the optimal decomposition result is screened by the orthogonality and the signal is reconstructed based on the kurtosis value to remove the signal noise. Secondly, in the RTSMWPE method, the fault feature extraction is realized by considering the signal amplitude information and replacing the traditional coarse-grained multi-scale method with a time-shifted multi-scale method. Finally, the proposed method is applied to the analysis of the experimental data of the reciprocating compressor valve; the analysis results demonstrate the effectiveness of the proposed method

    Spatial Potential Energy Weighted Maximum Simplex Algorithm for Hyperspectral Endmember Extraction

    No full text
    Most traditional endmember extraction algorithms focus on spectral information, which limits the effectiveness of endmembers. This paper develops a spatial potential energy weighted maximum simplex algorithm (SPEW) for hyperspectral endmember extraction, combining the relevance of hyperspectral spatial context with spectral information to effectively extract endmembers. Specifically, for pixels in a uniform spatial area, SPEW assigns a high weight to pixels with higher spatial potential energy. For pixels scattered in a spatial area, the high weights are assigned to the representative pixels with a smaller spectral angle distance. Then, the optimal endmember collection is determined by the simplex with maximum volume in the space of representative pixels. SPEW not only reduces the complexity of searching for the maximum simplex volume but also improves the performance of endmember extraction. In particular, compared with other newly proposed spatial-spectral hyperspectral endmember extraction methods, SPEW can effectively extract the hidden endmembers in a spatial area without adjusting any parameters. Experiments on synthetic and real data show that the SPEW algorithm has also provides better results than the traditional algorithms

    A Spatial-Enhanced LSE-SFIM Algorithm for Hyperspectral and Multispectral Images Fusion

    No full text
    The fusion of a hyperspectral image (HSI) and multispectral image (MSI) can significantly improve the ability of ground target recognition and identification. The quality of spatial information and the fidelity of spectral information are normally contradictory. However, these two properties are non-negligible indicators for multi-source remote-sensing images fusion. The smoothing filter-based intensity modulation (SFIM) method is a simple yet effective model for image fusion, which can improve the spatial texture details of the image well, and maintain the spectral characteristics of the image significantly. However, traditional SFIM has a poor effect for edge information sharpening, leading to a bad overall fusion result. In order to obtain better spatial information, a spatial filter-based improved LSE-SFIM algorithm is proposed in this paper. Firstly, the least square estimation (LSE) algorithm is combined with SFIM, which can effectively improve the spatial information quality of the fused image. At the same time, in order to better maintain the spatial information, four spatial filters (mean, median, nearest and bilinear) are used for the simulated MSI image to extract fine spatial information. Six quality indexes are used to compare the performance of different algorithms, and the experimental results demonstrate that the LSE-SFIM based on bilinear (LES-SFIM-B) performs significantly better than the traditional SFIM algorithm and other spatially enhanced LSE-SFIM algorithms proposed in this paper. Furthermore, LSE-SFIM-B could also obtain similar performance compared with three state-of-the-art HSI-MSI fusion algorithms (CNMF, HySure, and FUSE), while the computing time is much shorter

    Hyperspectral Imagery Classification Based on Multiscale Superpixel-Level Constraint Representation

    No full text
    Sparse representation (SR)-based models have been widely applied for hyperspectral image classification. In our previously established constraint representation (CR) model, we exploited the underlying significance of the sparse coefficient and proposed the participation degree (PD) to represent the contribution of the training sample in representing the testing pixel. However, the spatial variants of the original residual error-driven frameworks often suffer the obstacles to optimization due to the strong constraints. In this paper, based on the object-based image classification (OBIC) framework, we firstly propose a spectral–spatial classification method, called superpixel-level constraint representation (SPCR). Firstly, it uses the PD in respect to the sparse coefficient from CR model. Then, transforming the individual PD to a united activity degree (UAD)-driven mechanism via a spatial constraint generated by the superpixel segmentation algorithm. The final classification is determined based on the UAD-driven mechanism. Considering that the SPCR is susceptible to the segmentation scale, an improved multiscale superpixel-level constraint representation (MSPCR) is further proposed through the decision fusion process of SPCR at different scales. The SPCR method is firstly performed at each scale, and the final category of the testing pixel is determined by the maximum number of the predicated labels among the classification results at each scale. Experimental results on four real hyperspectral datasets including a GF-5 satellite data verified the efficiency and practicability of the two proposed methods

    Global Spatial and Local Spectral Similarity-Based Manifold Learning Group Sparse Representation for Hyperspectral Imagery Classification

    No full text
    International audienceSpectral-spatial framework has been widely applied for hyperspectral image classification task. Some well-established models, such as group sparse representation (GSR), have gained a certain advance but still mainly focus on the usage of local spatial similarity and neglect the nonlocal spatial information. Recently, nonlocal self-similarity (NLSS) has been exploited to support the spatial coherence tasks. However, current NLSS-based methods are biased toward the direct use of nonlocal spatial information as a whole, while the underlying spectral information is not well exploited. In this article, we proposed a novel method to exploit local spectral similarity through nonlocal spatial similarity, with the integration of local spatial consistency in a single framework. Specifically, the proposed approach first exploits the NLSS by searching the nonoverlapped similar patches in defined scopes. Then, spectral similarity is determined locally within the found patches. After that, the found similar data and the original data are fused in a designed pattern. Finally, the GSR-based classifier (GSRC) is applied to process the fused data characterized by the manifold learning algorithm. The experimental results based on three real hyperspectral data sets demonstrate the efficiency of the proposed method, with improvements over the other related nonlocal or local similarity-based methods

    Improving Water Resistance of Soy-Protein Wood Adhesive by Using Hydrophilic Additives

    No full text
    Soy protein adhesives are good candidates for the replacement of formaldehyde-based adhesives due to environmental concerns. However, poor water resistance has limited their application. This study was conducted to improve the water resistance of a soy-protein adhesive intended for plywood by polyethylene glycol (PEG) with different molecular weights. Ethylene glycol (EG), diethylene glycol (DEG), 400-, 2000-, and 10000-dalton polyethylene glycols were used as additives to soy protein isolate (SPI). The hydrogen bonding interaction, thermal properties, wettabilities on poplar veneer, and adhesion properties of the blended adhesives were investigated. Results showed that improving the wettability and intermolecular hydrogen bonding, induced by ethylene glycol, increased the wet adhesion strength by 30%. Higher-molecular weight polyethylene glycol imposed a decrease in adhesion due to its poor water resistance. Based on the present results, it is proposed to improve the water resistance of soy adhesives by introducing hydrophilic polyols, which also could simultaneously improve surface wetting and wet adhesion

    Crack Extraction for Polycrystalline Solar Panels

    No full text
    Crack extraction of solar panels has become a research focus in recent years. The cracks are small and hidden. In addition, there are particles of irregular shape and size on the surface of the polycrystalline solar panel, whose reflection position and direction are random. Therefore, there is a complex and uneven texture background on the solar panel image, which makes the crack extraction more difficult. In this paper, a crack extraction method combining image texture and morphological features is proposed. Firstly, the background texture and multi-scale details are suppressed by the linear filter and the Laplace pyramid decomposition method. Secondly, the edge can be extracted based on the modulus maximum method of the wavelet transform. Finally, cracks were extracted by using the improved Fuzzy C-means (FCM) clustering combining the morphological and texture features of the cracks. To make the extraction results more accurate and reasonable, an improved region growth algorithm is proposed to optimize the extraction results. All of the above research is closely centered on the accuracy and stability requirements of the solar cell crack detection, which is also the key point of this paper. The experimental results show that various improved or innovative algorithms proposed in this paper can accurately extract the position of cracks and obtain better extraction results. The detection results have good stability and can be faithful to the actual situation, which will promote the application of solar cells in more fields
    corecore